Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field

نویسندگان

  • Franco̧is Dehez
  • Lucie Delemotte
  • Peter Kramar
  • Damijan Miklavcǐc
  • Mounir Tarek
چکیده

Electroporation, the application of electric fields to alter the permeability of biological membranes, has recently become a clinical tool for the electrochemotherapy treatment of various cancers. Current electroporation theory assumes that the membrane is permeabilized through the formation of conducting hydrophilic pores, stabilized by rearrangement of lipid head groups. Here we have performed molecular dynamics simulations of negatively charged lipid bilayers subject to high transmembrane voltages together with electroporation experiments on planar bilayers. Our data reveal a hitherto unknown electroporation process in which large ion-conducting water columns not stabilized by lipid head groups are formed within the bilayer’s hydrophobic core. The existence of such hydrophobic pores challenges the standard theoretical description of pore creation in lipid membranes. Our findings open a new vista toward fine-tuning of electroporation-based treatments and biotechnical applications, and, in general, for enhancing the import of various substrates in liposomes or cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.

Hydrophobic nanopores provide a model system to study hydrophobic interactions at the nanoscale. Such nanopores could also function as a valve since they halt the transport of water and all dissolved species. It has recently been found that a hydrophobic pore can become wetted i.e. filled with condensed water or an aqueous solution of salt when a sufficiently high electric field is applied acro...

متن کامل

Response of A Saline Solution Containing A Macromolecule To An External Electric Field

The dynamical behavior of a model for body fluids in response to an external electric field is computationally investigated for communication frequencies. The effect of an applied potential difference between two electrodes in a saline solution containing a rodlike macromolecule is studied by solving the Poisson and ion continuity equations simultaneously using the finite element method (FEM). ...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

Effect of electric field on liquid infiltration into hydrophobic nanopores.

Understanding the variation of nanofluidic behavior in the presence of an external electric field is critical for controlling and designing nanofluidic devices. By studying the critical infiltration pressure of liquids into hydrophobic nanopores using molecular dynamics (MD) simulations and experiments, important insights can be gained on the variation of the effective liquid-solid interfacial ...

متن کامل

Molecular simulation studies of hydrophobic gating in nanopores and ion channels.

Gating in channels and nanopores plays a key role in regulating flow of ions across membranes. Molecular simulations provide a 'computational microscope' which enables us to examine the physical nature of gating mechanisms at the level of the single channel molecule. Water enclosed within the confines of a nanoscale pore may exhibit unexpected behaviour. In particular, if the molecular surfaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014